Remote sensing approaches for detecting and monitoring cyanobacteria blooms in lakes

Darryl J. Keith, Research Oceanographer
EPA/ORD/NHEERL/Atlantic Ecology Division

Cyanobacteria Monitoring and Analysis Workshop
USEPA Regional Laboratory
Chelmsford, MA
June 26, 2013
Optical components and pathways of radiance and reflectance in lake waters

Multiple light paths

- **Scattering due to:**
 - atmosphere
 - aerosols
 - water surface
 - suspended particles
 - bottom

- **Absorption due to:**
 - atmosphere
 - aerosols
 - suspended particles
 - dissolved matter
What is lake optical color?

Figure 1. Electromagnetic spectrum and region of reflected light remote sensing.
Definition of Remote Sensing Reflectance

\[R_{rs}(0^+, \lambda) = \frac{L_w(0^+, \lambda)}{E_s(0^+, \lambda)} \]

- \(R_{rs} = \text{remote sensing reflectance (1/sr)} \)
- \(L_w(0^+, \lambda) = \text{water leaving radiance measured above the air/water interface (W m}^{-2} \text{ sr}^{-1}) \)
- \(E_s((0^+, \lambda) = \text{downwelling irradiance measured above the air/water interface (W m}^{-2} \text{ sr}^{-1}) \)
Type 1 spectra
Bright blue, clear lakes low chl a, and dominated by CDOM

Type 2 spectra
Green lakes with high chl a and cyanobacteria present.

Type 3 spectra: similar to Type 2 with lower chl a and cyanobacteria
Aircraft monitoring with hyperspectral sensor packages

Advantages:
* Better temporal and spatial coverage compared to field sampling.

Optimal coverage of small lakes (<10 to >1000 hectares).
Retrieval of phytoplankton biomass [chl a] from Red and NIR spectral data (Le et al., 2002; Hunter, 2010)

Pigment concentration $\propto \left[R_{rs}^{-1}(\lambda_1) - R_{rs}^{-1}(\lambda_2) \right] \times R_{rs}(\lambda_3)$

$R^2 = 0.97$

<table>
<thead>
<tr>
<th>Location</th>
<th>$[R_{rs}^{-1}(672) - R_{rs}^{-1}(712)] \times R_{rs}(749)$</th>
<th>Chl a measured (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canaan Street Lake, NH</td>
<td>0.86</td>
<td>3</td>
</tr>
<tr>
<td>Crooked Pond, NH</td>
<td>2.70</td>
<td>10</td>
</tr>
<tr>
<td>French Pond, NH</td>
<td>3.59</td>
<td>15</td>
</tr>
<tr>
<td>Harvey Lake, NH</td>
<td>2.04</td>
<td>8</td>
</tr>
<tr>
<td>Howe Reservoir, NH</td>
<td>1.35</td>
<td>7</td>
</tr>
<tr>
<td>Powder Mill Pond, NH</td>
<td>0.74</td>
<td>2</td>
</tr>
<tr>
<td>Thorndike Pond, NH</td>
<td>0.84</td>
<td>5</td>
</tr>
<tr>
<td>Turtle Pond, NH</td>
<td>6.52</td>
<td>36</td>
</tr>
<tr>
<td>Webster Lake, NH</td>
<td>2.10</td>
<td>8</td>
</tr>
<tr>
<td>Lake Attitash, Ma</td>
<td>6.63</td>
<td>40</td>
</tr>
<tr>
<td>Flat River Reservoir, RI</td>
<td>0.14</td>
<td>2</td>
</tr>
<tr>
<td>Beach Pond, RI</td>
<td>0.15</td>
<td>2</td>
</tr>
<tr>
<td>Watchaug Pond, RI</td>
<td>1.47</td>
<td>5</td>
</tr>
<tr>
<td>Yawgoo Pond, RI</td>
<td>6.05</td>
<td>27</td>
</tr>
</tbody>
</table>
Model Validation

\[y = 0.98 + 0.019 \]
\[R^2 = 0.97 \]
\[\text{RMSE} = 2.64 \, \mu g/L \]
\[N = 31 \]
Summary of trophic status for New England lakes based on phytoplankton concentrations

<table>
<thead>
<tr>
<th>Trophic status</th>
<th>NE Coastal Zone Ecoregion (No. of lakes and ponds surveyed)</th>
<th>NE Highlands Ecoregion</th>
<th>% of total lakes and ponds surveyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligotrophic (Chl a < 2 μg/L)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mesotrophic (Chl a > 2 to 7 μg/L)</td>
<td>18</td>
<td>16</td>
<td>69</td>
</tr>
<tr>
<td>Eutrophic (Chl a > 7 to 30 μg/L)</td>
<td>5</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Hypereutrophic (Chl a > 30 μg/L)</td>
<td>5</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

Trophic status definitions from EPA National Lakes Assessment Program
Summary of biological condition for New England lakes based in chl a concentrations

<table>
<thead>
<tr>
<th>Biological Condition</th>
<th>Ecoregion</th>
<th>Chlorophyll Thresholds</th>
<th>Number of lakes and ponds</th>
<th>% of lakes and ponds surveyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good-Fair</td>
<td>NE Coastal Zone</td>
<td><29 µg/L</td>
<td>23</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>NE Highlands</td>
<td><7.6 µg/L</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>Fair</td>
<td>NE Coastal Zone</td>
<td>29 to 76 µg/L</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>NE Highlands</td>
<td>7.6 to 13 µg/L</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fair-Poor</td>
<td>NE Coastal Zone</td>
<td>> 76 µg/L</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NE Highlands</td>
<td>> 13 µg/L</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Biological condition definitions and chlorophyll thresholds from EPA National Lakes Assessment Program
Space-based Lake Color Sensors

SENSOR (spatial resolution)
- **HICO**
 - 100 m

PLATFORM
- **International Space Station**
 - (Sept 2009 –present)

AGENCY
- **NASA ISS Program**

Data Distribution Policy
- Products distributed online from HICO/OSU web site

Data Access
- Investigator Proposal Required

Cost to User
- No cost

SENSOR (spatial resolution)
- **MERIS**
 - 300/1000 m

PLATFORM
- **ENVISAT**
 - (Jan 2002-Apr 2012)

AGENCY
- **European Space Agency**

Data Distribution Policy
- Free online access of reduced resolution datasets through 'My Earthnet’ website

Data Access
- Registration required

Cost to User
- No cost

Advantage: spatial and temporal coverage for “large” lakes
Phytoplankton distribution and abundance in Lake Champlain: June 4, 2009

Also see: S.M. Wheeler et al. / Journal of Great Lakes Research 38 (2012) 68–75

[Chl a] µg/L
- 0.5 – 1.8
- 1.8 – 5.4
- 5.4 – 14.4
- 14.4 – 27.5
- 27.5 - >46

MERIS image courtesy of the European Space Agency
Retrieval of cyanobacterial biomass [C-PC] from spectral data (Simis et al., 2005; Gons et al., 2005; Hunter et al., 2010)

\[
[C-PC] \text{ (µg/L)} = \frac{a_{C-PC}(620)}{(a_{C-PC}^*(620))} \approx 0.007
\]

\[
a_{C-PC}(620) = \left(\left[a_w(709) + b_b(779)\right] \times \left[R(709)/R(620)\right]\right) - b_b(779) - a_w(620) - a_{chl}(665)
\]

\[
a_w(709) = \text{water absorption at 709 nm},
\]
\[
a_w(620) = \text{water absorption at 620 nm},
\]
\[
b_b(779) = \text{backscatter at 779 nm},
\]
\[
R(709) = \text{reflectance at 709 nm},
\]
\[
R(620) = \text{reflectance at 620 nm},
\]
\[
a_{chl}(665) = \text{chl a absorption at 665 nm}.
\]
Phycocyanin distribution from MERIS image: June 4, 2009

- Missisquoi Bay
- Malletts Bay
- Central Lake Champlain
- South Lake Champlain

Color legend:
- Green (<2 ug/L)
- Yellow (2-8 ug/L)
- Red (>8 ug/L)
Relative risk of cyanobacteria dominance for New England lakes and ponds based on measured total phosphorus (Total P) concentrations and lake susceptibility to dominance (C-PC:Chl a).

Relative risk of cyanobacteria dominance for New England lakes and ponds based measured total nitrogen (Total N) concentrations and lake susceptibility to dominance (C-PC:Chl a)

Recreational Suitability of New England Lakes based on Potential Human Health Hazards

<table>
<thead>
<tr>
<th>Relative Probability of Acute Health effects</th>
<th>NE Coastal Zone Ecoregion (no. of lakes and ponds)</th>
<th>NE Highlands Ecoregion</th>
<th>Health Effects *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (Chl a < 10 μg/L)</td>
<td>19</td>
<td>16</td>
<td>Skin irritations, Gastrointestinal illness</td>
</tr>
<tr>
<td>Moderate (Chl a 10-50 μg/L)</td>
<td>8</td>
<td>5</td>
<td>Long term illness, Skin irritations, Gastrointestinal illness</td>
</tr>
<tr>
<td>High (Chl a 50-5000 μg/L)</td>
<td>1</td>
<td>0</td>
<td>Potential for acute poisoning, Long term illness, Skin irritations, Gastrointestinal illness</td>
</tr>
</tbody>
</table>

* from World Health Organization
Questions?

Journal of Applied Remote Sensing

Trophic status, ecological condition, and cyanobacteria risk of New England lakes and ponds based on aircraft remote sensing

Darryl J. Keith
Bryan Milstead
Henry Walker
Hilary Snook
James Szykman
Michael Wusk
Les Kagey
Charles Howell
Cecil Mellanson
Christopher Dracke