

Geothermal 101

Kevin Maher Managing Member

Thermonexus, LLC
PO Box 4497
Windham, NH 03087
603-432-3631
www.thermonexus.com

Connecting you to clean energy

Agenda

- Basics of Geothermal
- Heat Pumps How do you get heat from cold water?
- Borehole exchangers vs. performance
- Design considerations impacting heat pump performance

Two Types of Geothermal

A. Hot Rock – Hot Water/Steam

- 1. Electrical Generation
- 2. Direct Heating

Two Types of Geothermal

B. Low Temperature Thermal Exchange

Ground Source Heat Pumps (GSHP) – Geothermal Heat Pumps

- Exploit the constant temperature of the Earth
- Refrigeration cycle and phase change
- Provides interior climate control
 - Cooling A/C
 - Heating

Advantages

- ✓ Reduces
 - ✓ Energy demand
 - ✓ Price volatility
 - ✓ Summer peak demand
- ✓ Available at point of use (most everywhere)
- ✓ Unobtrusive no eyesores or noise NIMBY safe
- U.S. Environmental Protection Agency (EPA)
 - The most energy-efficient, environmentally clean, and cost-effective space conditioning system available.
 - Significant emission reductions potential
 - When used for both heating and cooling
 - Electricity produced from renewable resources

Absorbed Energy

Temperature Variation with Depth

Figure 3. Amplitude of seasonal soil temperature change as a function of depth below ground surface.

- ET, Conduction, Advective
- HC and λ
- Incoming radiation
- Rainfall
- Seasonal Air Temp
- Vegetation
- Depth

VT Dept Mines, Mineral & Energy

Why Geothermal Heat Pumps

Long-term solar energy...a sustainable resource

Coupling the Heat Pump

Three main components to the System

Movement of Heat

Temperature change

10 Btu's needed to raise temp of 1 lb. of water by 10 degrees

10 Btu's released lowering temp of 1 lb. of water by 10 degrees

Boiling Water

1060 Btu's needed to change 1 lb. of 212° water to 1 lb. of 212° steam at sea level.

Boiling Point Function of Pressure

- 10 PSIG, temp = 240°
- 15 PSIG, temp = 250°
- -3 PSIG, temp = 202°

Physics of Heat Pumps

1060 Btu to evaporate 1 lb of water (at 60°F) 1060 Btu is released when that 1 lb of water condenses

Heating

Types of Heat Pumps

Water to Air

Water to Water

High Energy Efficiency

Coupling the Heat Pump

Three main components to the System

Types of Ground Heat Exchangers (GHEX)

Water Based

Refrigerant Based

Direct Exchange (DX)

Open

- Pump and Dump (Discharge to surface water)
- Withdrawl-Recharge
- Standing Column

Closed

- U-tube
- Concentric
- Horizontal Slinky
- Vertical Slinky
- Pond Loop

Open Loop – Pump and Dump

Advantages

- High Heat Transfer Efficiency
- Constant Water Temperature

- Water Quality Concerns
- Disposal Issues
- Requires Sufficient Yield
- Regulatory Issues
 - WMA/NPDES/GWDP

Withdrawal/Recharge Wells

Standing Column Wells

- High capacity in a small footprint
- Open design, water re-circulates in borehole
- Typically 1500 ft deep
- In-well pumping equipment
- Efficiency comes from advective heat transfer
- Performance is dependant upon quality of water encountered and ability to bleed

Capacity

5-10% bleed on command = 45-80 ft/ton No bleed - 100% return = 100-135 ft/ton

Carl Orio – MWUA presentation- 2/09

U-tubes – The Industry's Standard for 30 yrs.

Advantages

- Less Environmental Concerns
- No Water Quantity Issues
- No Water Quality Issues
- Lower Maintenance

- Lower Heat Transfer Thermally Inefficient
- More Borehole/Ton
- More Land Required
- More Site Disruption
- More Expensive To Install

Concentric Closed Loop HPGX

Advantages

- High Heat Transfer
- Improved Heat Pump Performance
- Smaller Wellfield/Less Site Disruption
- Suitable for Salt Water
- Deep Capability

- Higher Unit Cost
- Relatively New Technology
- Lower Efficiency than Open Loop

Closed Loop - Horizontal

Advantages

- Lower Installation Cost
- Concentrated Heat Transfer Area

- Lower Tonnage/ ft.
- Significant Site Disruption

http://www.idahogeothermal.com/2010/02/24/6-ton-water-source-heat-pump-and-closed-loop-system/

Closed Loop – Vertical Slinky System

Advantages

- Easiest and Cheapest to Install
- Less Site Disruption
- Vertical Trenches

- Bury Depth Less Than Horizontal Slinky Systems
- Suitable Soils Needed
- Thermally Inefficient
- Long Lengths Needed

http://www.global-greenhouse-warming.com/ground-source-heat-pump.html

Closed Loop – Lake/Pond

Advantages

- High Efficiency
- Low Installation Cost
- Easy to Install/Repair

- Limited Application
- Regulatory Issues
- Environmental Impacts

DX Systems

- Copper Tubing Loop Installed Vertically or Horizontally
- Installed in Small
 Diameter/Shallow Borehole
 (>100 ft.)
- Loops Filled with Refrigerant
- Grouted After Copper Tubing is Installed

http://www.earthlinked.com/residential/how-it-works

Choosing a GHEX Depends Upon

GHEX Selection Matrix		Geology	Logistical	Technical	Economic	Risk	\int
Exchanger Types	Closed loop U-tube						
	Concentric						
	DX						
	Horizontal Slinky						
	Hybrid						
	Open Doublet						
	Pond Loop						
	Standing Column						

The Importance of the Ground Connection

Geothermal Success depends upon:

- a) Data-driven Design
 - Understanding Ground Conditions
 - Hydrogeology
 - Formation Conductivity Testing
 - Measuring Exchanger Performance

- b) Proper Installation
 - Drilling
 - Grouting
 - Post-installation Pressure and Flow tests

The Immutable Law

Fundamental Theory of Heat Conduction

Fluid temperature is a function of 3 factors

Source: C Ecklof and S Gehlin, 1996

Borehole Resistance

The 'Temperature Tax'

- Inability to conduct heat from the water to the earth
- Cumulative effects from:
 - Thermal conductivity of the materials used
 - Geometry of the exchanger within the borehole
 - Contact time
- Three hurdles:

Thermal Performance by Exchanger Type

Economics

High Capital Cost, Low Operating Costs

- First cost hurdle
- 40-60+% annual savings over conventional climate control systems
- ROI is variable, dependant upon
 - Cost of electricity vs. fuel
 - Construction costs
 - Equipment offset (GSHP vs. Conventional)
 - Drilling requirements

A Commercial Perspective

Fort Polk, LA - US Army - 4,000 units - 5.6 million ft

GSHP's and Energy Upgrades 6,600 Tons Initial Cost - \$19 million

- √ 32.4% Electricity savings
- √ 40% Peak Reduction
- ✓ Nat Gas reduced 260K therms
- ✓ Maintenance reduced to 77% of pre-retrofit level

Total Savings = \$3 million/year Payback = 6.3 years

Each data point represents the electric use of 200 homes (one electrical feeder) on a given day.

Source: USDOE Fed Energy Management Program

Problems and Pitfalls in the Drilling World

Drilling into the unknown.

Successful drillers are those who understand and respect the challenges that lie beneath their feet, and have plans B and C at the ready.

The challenges are many, the possible solutions are few.

High yield conditions	Flowing well conditions		
Highly fractured rock	Running sands		
Borehole deviation	• Over excavation – Sinkholes		
• Loss of Mud	Methane		
Salt water production	Incompetency		

Wrap-up

Thank you

Questions?

Thermonexus, LLC
PO Box 4497
Windham, NH 03087
603-432-3631
www.thermonexus.com

