

Mastering Building Science

Lloyd Hamilton, Certified Geothermal Designer President

Antifreeze in Geothermal Ground Loops: Selection Protocol

NORTHEAST REGIONAL GEOTHERMAL WORKSHOP U.S. EPA New England Regional Laboratory North Chelmsford, Massachusetts March 29, 2011

Types of Antifreeze Used

MethanolEthanolPropylene Glycol

Methanol

- Very good from a performance standpoint
 The best performing antifreeze
- Very poor from an environmental standpoint
 High toxicity
 Flammable

Ethanol

Very good from a performance standpoint
 Almost as good as methanol

Good from an environmental standpoint
 Denaturing agent only concern

Propylene Glycol

- Poor from a performance standpoint
 Significantly worse than any other antifreeze
 Perfect growth medium for bacteria
- Very good from an environmental standpoint
 Food grade not appropriate for geothermal

Which One to Use?

- Methanol too toxic for me
- Propylene has too low of a performance for me
- Ethanol has the combination of low toxicity and good performance I am looking for in an antifreeze

In What Concentration?

- The standard in the NE has become using 30% propylene glycol and a 20°F loop temperature
 - This creates a very poor performing system
- I try to never use more than a 10% concentration of Ethanol, which minimizes the performance degradation caused by any antifreeze
- Never use an automatic feeder
 - It can create an environmental mess

Water

My preferred closed loop fluid

- Excellent from a performance standpoint
- Excellent from an environmental standpoint
- Most expensive to install due to longer loop lengths
- Lowest energy use of any closed loop system
 Vertical wells only

Direct use of Water

- Very good from a performance standpoint
 - Higher pumping energy needed
 - Higher efficiency

Very good from an environmental standpoint

- Water should be returned to the same aquifer it is taken from
- Contamination risk low

POE OIL MSDS

III. POTENTIALLY HAZARDOUS INGREDIENTS

None

IV. HEALTH HAZARD DATA

INCLUDES AGGRAVATED MEDICAL CONDITIONS, IF ESTABLISHED

THRESHOLD LIMIT VALUE: 5.00 mg/m3 Suggested for Oil Mist

EFFECTS OF OVEREXPOSURE: Not hazardous except as oil mist. Prolonged or repeated overexposure to oil mists may lead to chronic pulmonary inflammation, in rare instances.

V. EMERGENCY AND FIRST AID PROCEDURES

FOR PRIMARY ROUTES OF ENTRY

EYE CONTACT: Flush eyes for 15 min, with large amounts of water. If material is hot, treat for thermal burns and take victim to the hospital immediately.

SKIN CONTACT: Remove contaminated clothing. If material is hot, submerge injured area in cold water. If victim is severely burned take to a hospital for burn treatment.

INHALATION: This material has a low vapor pressure and is not expected to present an inhalation exposure at ambient temperatures.

INGESTION: May act as laxative. Do not induce vomiting.

Why Efficiency Matters

Electricity used as fuel

- Electric production creates environmental contamination such as mercury
- Higher peak use
- The loop field will last for more than a century
- The extra electricity use caused by inefficient antifreeze selection will always be present.
- With Net-Zero Energy buildings the extra solar panels are more expensive than the extra loop length.

Questions?

