A Cost-effectiveness Analysis of a Prescription and Over-the-counter Drug Take-back Program for New York State

Michael Dobis, Pharm.D. Candidate
Leon Cosler, R.Ph., Ph.D.
John Polimeni, Ph.D.
Outline

• Purpose

• Background Information

• Theoretical Model

• Questions and feedback
Purpose

• Introduce theoretical economic model
 • Cost-benefit design

• Human and environmental health implications

• Develop inclusive list of societal costs and benefits

• Refine model parameters
Background Information

• Purpose of economic evaluation:
 • Efficient resource allocation
 • Cost abatement
 • Prioritize public health concerns
Pharmaceuticals

• National Association of Chain Drug Stores
 • ~3.2 billion prescriptions filled in 2003
 • ~2.2 billion prescriptions filled in 1995
 • Not including OTC’s

• Prescription and OTC products identified in NY (Wilson, 2006)
 • Atenolol
 • Estrone
 • Ibuprofen
 • Carbamazepine
 • Trimethoprim
 • Caffeine

• Source:
Background Information

• Medication take back programs include:
 • One day events
 • Extended producer responsibility
 • Deposit system
One Day Events

• Several variations have been done

• Limitations:
 • Short duration
 • Participation is voluntary
 • Medication container recycling

• Sources:
 • Franklin County Pilot Unwanted Medications Collection: Senior Center, Turner Falls (Montague), Massachusetts. 9 December 2004.
Extended Producer Responsibility

• Definition:

The development of policies for the take-back, recycling, and final disposal of used products (Driedger, 2002)
An Example

• British Columbia Medications Return Program
 • Pharmaceutical manufacturers sponsor
 • Utilize community pharmacies
 • Collect unused/expired medications which are destroyed as hazardous waste
 • In 2005 collected 18,012 kg and cost $225,000 (Partridge, 2006)
Extended Producer Responsibility

• Limitations:
 • Consumer participation is voluntary
 • Medication container recycling

• Sources:
Deposit System

• Medication deposit system:
 • Consumers pay deposit on medication container
 • Receive deposit refund upon container’s return
 • Returned medications collected for disposal as hazardous waste
 • Medication container recycled

• Venue:
 • Community Pharmacies
Deposit System

- Model based upon:
 - Recyclable goods
 - Consumer behavior patterns

- Deposit system maximizes participation
 - Financial incentive
 - Increases medication return
 - Initiates medication container recycling
Deposit System

- Limitations
 - Consumer resistance
 - Agricultural agents
Deposit System

• Basic Assumptions:
 • Consumers will return unused /expired medications with deposited container
 • Demand for medications is inelastic
 • Societal perspective
 • Producer
 • Consumer
Model

• Theoretical using mathematical equations consumer & producer costs

• Consumption Methods:
 • Method X – Consumer utilizes medication and returns the container with unused / expired portions
 • Method Y – Consumer disposes of containers with unused / expired medication portions
Model

• \(R(X) \) represents recycling costs pharmacies incur from deposit system

• Comprised of:
 • Processing costs
 • Storage costs
 • Disposal costs
Model

• S represents containers which are not returned

$$Q = Q(X+Y, S(X))$$

• Where:
 • $Q = \text{Quantity}$
 • $Q(X+Y) = \text{positive utility from consumption}$
 • $Q(S(X)) = \text{the inconvenience of returning containers / medications}$

• Consumer utility
Model

Marginal externality of dumping =
Marginal cost of recycling –
Marginal inconvenience cost of returning containers/medications

• Summarizes Consumer’s side
Model

• Producers side:
 • Assume single processes for production and distribution

• Z represents costs which producer incurs based on amount of containers and/or medications returned

• $Z = X + Y$
Model

- Producers want to maximize profits
 - Incur costs of:
 - Recycling
 - Storage
 - Processing
 - Gain revenue:
 - Unclaimed deposits
 - Consumer patronage
Model

• Consumers will **return** containers with unused / expired medications:
 • If inconvenience costs of returning < deposit

• Consumers will **dump** containers with unused / expired medications:
 • If inconvenience costs of returning > deposit
Inelastic Demand

- **Price**
- **Demand**
- **Supply**

Points:
- P'
- P''
- P^*

Quantities:
- Q'
- Q''
- Q^*
Deposit System Analysis

- Consumers pay deposit
- Receive refund upon return
- Those who find it too inconvenient will not participate
- Uncollected deposits entice producers to participate
- Goal to maximize medication return to decrease PPCP pollution
- Limitation of consumer resistance
Societal Costs and Benefits

<table>
<thead>
<tr>
<th>Costs</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage costs</td>
<td>Improved human health</td>
</tr>
<tr>
<td>Processing costs</td>
<td>Improved environment</td>
</tr>
<tr>
<td>Recycling costs</td>
<td>Higher drinking water quality</td>
</tr>
<tr>
<td>Disposal costs</td>
<td>Increased employment opportunities</td>
</tr>
<tr>
<td>Public education</td>
<td>Residual value of recyclable container</td>
</tr>
<tr>
<td>Cost of deposit</td>
<td>Increased revenue</td>
</tr>
<tr>
<td>Time costs</td>
<td>Decreased raw materials</td>
</tr>
<tr>
<td>Transportation costs</td>
<td>Reduced container production costs</td>
</tr>
<tr>
<td>Manufacturing costs</td>
<td>Consumer patronage</td>
</tr>
<tr>
<td>Enforcement costs</td>
<td>Societal beneficence</td>
</tr>
<tr>
<td>Health costs</td>
<td></td>
</tr>
<tr>
<td>Insurance costs</td>
<td></td>
</tr>
</tbody>
</table>
It's QUESTION TIME!!