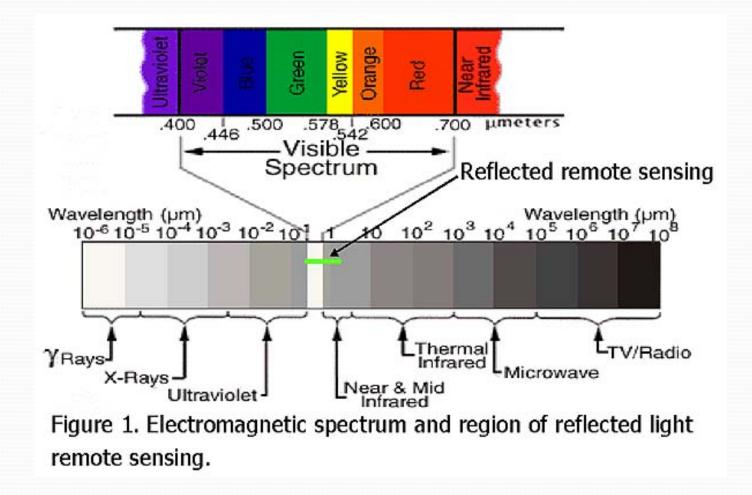

Remote sensing approaches for detecting and monitoring cyanobacteria blooms in lakes

Darryl J. Keith, Research Oceanographer EPA/ORD/NHEERL/Atlantic Ecology Division

Cyanobacteria Monitoring and Analysis Workshop

USEPA Regional Laboratory Chelmsford, MA June 26, 2013

Optical components and pathways of radiance and reflectance in lake waters

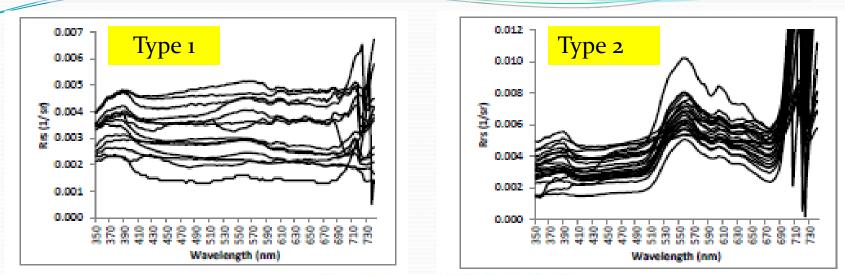

Multiple light paths

- Scattering due to:
 - atmosphere
 - aerosols
 - water surface
 - suspended particles
 - bottom

• Absorption due to:

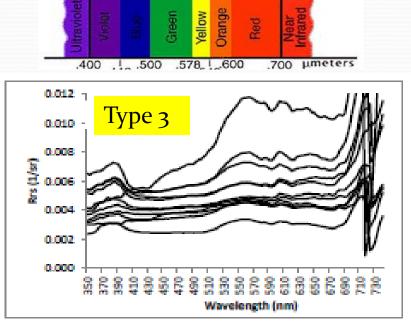
- atmosphere
- aerosols
- suspended particles
- dissolved matter

What is lake optical color?

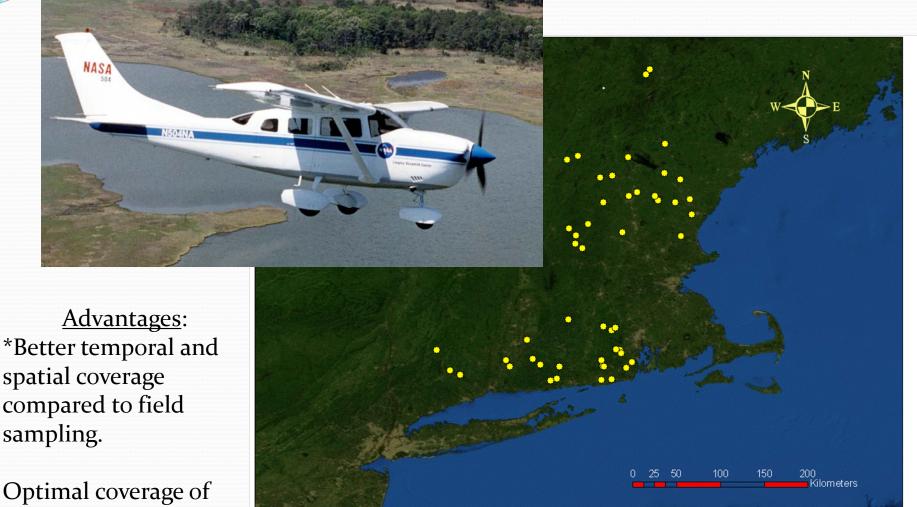


Definition of Remote Sensing Reflectance

$$R_{rs}(0^+,\lambda) = L_w(0^+,\lambda) / E_s(0^+,\lambda)$$

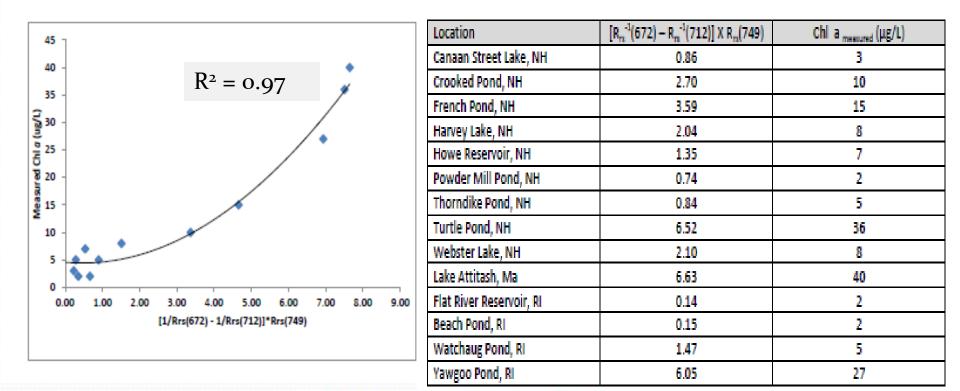

 R_{rs} = remote sensing reflectance (1/sr) $L_w (0^+, \lambda)$ = water leaving radiance measured above the air/water interface (W m⁻² sr⁻¹), $E_s ((0^+, \lambda)$ = downwelling irradiance measured above the air/water interface (W m⁻² sr⁻¹)

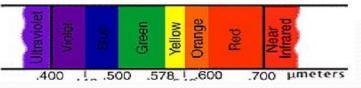
Spectral Character of New England Lakes and Ponds


<u>Type 1 spectra</u> Bright blue, clear lakes low chl *a*, and dominated by CDOM

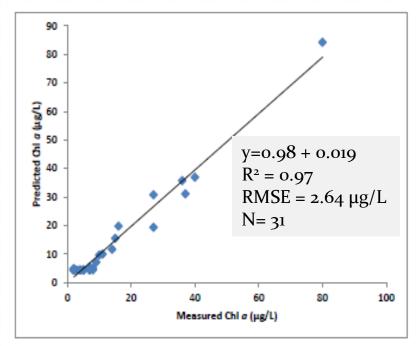
<u>Type 3 spectra</u>: similar to Type 2 with lower chl *a* and cyanobacteria

<u>Type 2 spectra</u> Green lakes with high chl *a* and cyanobacteria present.


Aircraft monitoring with hyperspectral sensor packages



small lakes (<10 to >1000 hectares).


Retrieval of phytoplankton biomass [chl a] from Red and NIR spectral data (Le et al., 2002; Hunter, 2010)

pigment concentration
$$\propto [R_{rs}^{-1}(\lambda_1) - R_{rs}^{-1}(\lambda_2)] \times R_{rs}(\lambda_3)$$

Model Validation

Lake Name	State	F	Number of days	Chi a	Chl a
Lake Name	State	Ecoregion	sampled postflight	(measured)	(estimated)
Beseck Lake	СТ	NE Coastal Zone	10	7	5
Bigelow Pond	СТ	NE Coastal Zone	10	4	4
Gardner Lake	СТ	NE Coastal Zone	9	37	31
Hatch Pond	СТ	NE Highlands	3	7	4
Lake Lillinonah	СТ	NE Coastal Zone	2	9	7
Lake Zoar	СТ	NE Coastal Zone	2	27	19
Middle Bolton Lake	СТ	NE Coastal Zone	9	7	5
Pickerel Lake	СТ	NE Coastal Zone	10	2	5
Pocotopaug Lake	СТ	NE Coastal Zone	10	14	12
Powers Lake	СТ	NE Coastal Zone	9	80	84
Silver Lake	СТ	NE Coastal Zone	1	5	4
Uncas Pond	СТ	NE Coastal Zone	9	16	20
Lake Attitash	MA	NE Coastal Zone	0	40	37
Canaan Street Lake	NH	NE Highlands	0	3	4
Crooked Pond	NH	NE Coastal Zone	0	10	10
French Pond	NH	NE Highlands	0	15	16
Harvey Lake	NH	NE Coastal Zone	0	8	5
Howe Reservoir	NH	NE Highlands	0	7	4
Jenness Pond	NH	NE Coastal Zone	0	4	5
Pearly Lake	NH	NE Highlands	0	11	10
Powder Mill Pond	NH	NE Highlands	0	2	4
Thorndike Pond	NH	NE Highlands	0	5	4
Turtle Pond	NH	NE Coastal Zone	0	36	36
Webster Lake	NH	NE Highlands	0	8	5
Beach Pond	RI	NE Coastal Zone	2	2	5
Flat River Reservoir	RI	NE Coastal Zone	2	2	4
Mishnock Lake	RI	NE Coastal Zone	1	2	5
Stump Pond	RI	NE Coastal Zone	2	2	5
Watchaug	RI	NE Coastal Zone	1	5	5
Wincheck Pond	RI	NE Coastal Zone	2	2	5
Yawgoo Pond	RI	NE Coastal Zone	1	27	31

Summary of trophic status for New England lakes based on phytoplankton concentrations

Trophic status	NE Coastal Zone Ecoregion (No. of lakes and ponds surveyed)	NE Highlands Ecoregion	% of total lakes and ponds surveyed
Oligotrophic (Chl a < 2 µg/L)	0	0	0
Mesotrophic (Chl $a > 2$ to 7 μ g/L)	18	16	69
Eutrophic (Chl a > 7 to 30 µg/L)	5	4	18
Hypereutrophic (Chl a > 30 µg/L)	5	1	12

Trophic status definitions from EPA National Lakes Assessment Program

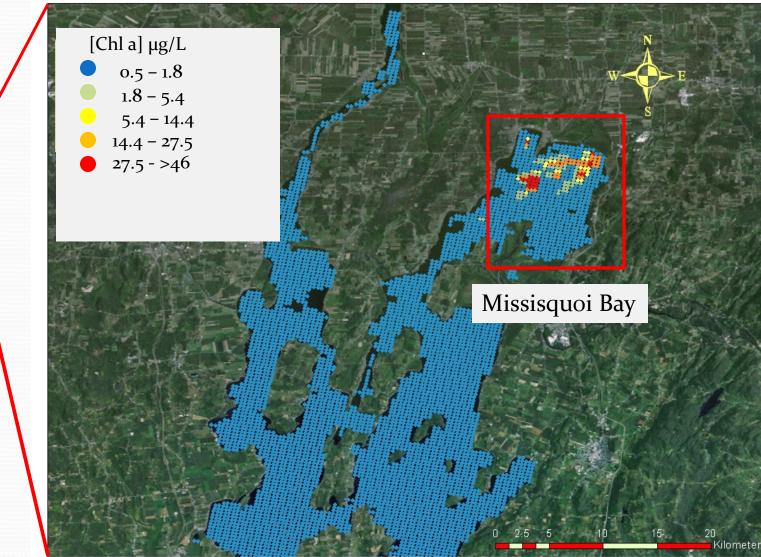
Summary of biological condition for New England lakes based in chl *a* concentrations

Biological Condition	Ecoregion	Chlorophyll Thresholds	Number of lakes and ponds	% of lakes and ponds surveyed
Good-Fair	NE Coastal Zone	<29 µg/L	23	47
	NE Highlands	<7.6 µg/L	16	33
Fair	NE Coastal Zone	29 to 76 µg/L	4	8
	NE Highlands	7.6 to 13 μg/L	1	2
Fair -Poor	NE Coastal Zone	> 76 µg/L	1	2
	NE Highlands	> 13 µg/L	4	8

Biological condition definitions and chlorophyll thresholds from EPA National Lakes Assessment Program

Space-based Lake Color Sensors

SENSOR PLATFORM AGENCY **Data Distribution Data Access Cost to User** (spatial resolution) Policy NASA ISS Program International **Space Station Products distributed** Investigator **HICO** online from HICO/OSU **Proposal** No cost 100 m Required (Sept 2009 -present) web site

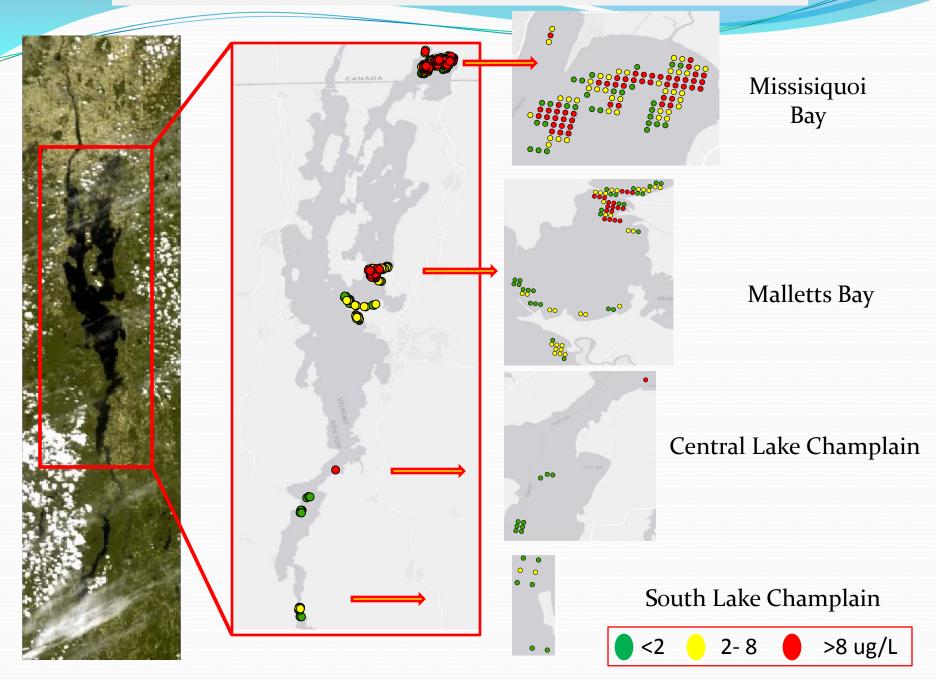

Registration required Free online access of reduced resolution European No cost datasets through 'My ENVISAT Space Earthnet' website MERIS 300/1000 m Agency (Jan 2002-Apr 2012) Investigator Access restrained data sets **Proposal** by submitting a 'My required Earthnet' project proposal

Advantage: spatial and temporal coverage for "large" lakes

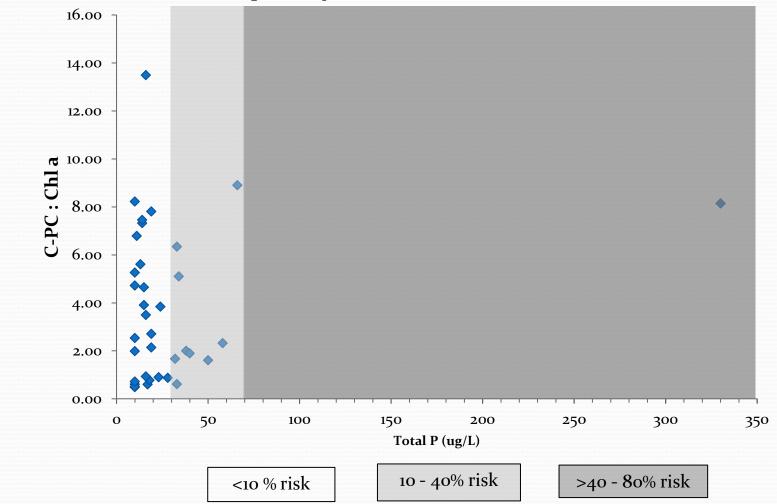
Phytoplankton distribution and abundance in Lake Champlain: June 4, 2009

Also see: S.M. Wheeler et al. / Journal of Great Lakes Research 38 (2012) 68-75

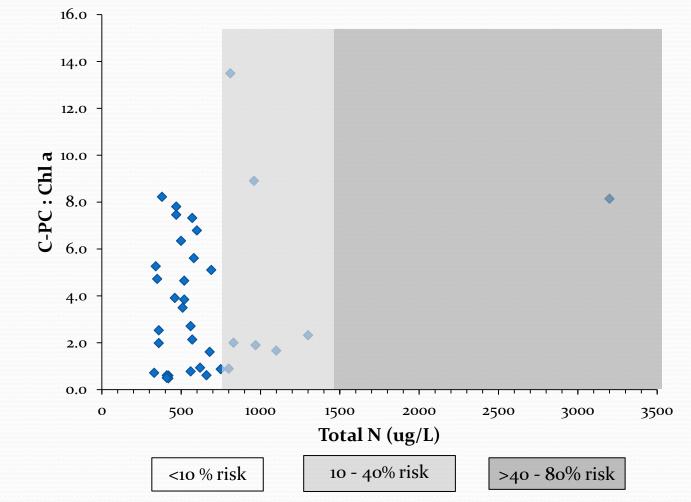
MERIS image courtesy of the European Space Agency


Retrieval of cyanobacterial biomass [C-PC] from spectral data (Simis et al., 2005; Gons et al., 2005: Hunter et al., 2010)

$$[C-PC] (\mu g/L) = a_{C-PC}(620)/((a_{C-PC}^{*}(620)) \approx 0.007)$$


$$a_{C-PC}(620) = \left(\left\{ \begin{bmatrix} a_w(709) + b_b(779) \end{bmatrix} \times \begin{bmatrix} R(709) / R(620) \end{bmatrix} \right\} - b_b \\ (779) - a_w(620) - a_{chl}(665) \end{bmatrix}$$

 $a_w(709) =$ water absorption at 709 nm, $a_w(620) =$ water absorption at 620 nm, $b_b(779) =$ backscatter at 779 nm, R(709) = reflectance at 709 nm, R(620) = reflectance at 620 nm, $a_{chl}(665) =$ chl *a* absorption at 665 nm.


Phycocyanin distribution from MERIS image : June 4, 2009

Relative risk of cyanobacteria dominance for New England lakes and ponds based measured total phosphorus (Total P) concentrations and lake susceptibility to dominance (C-PC:Chl a)

See: Downing, JA, Watson, SB, McCauley, E., 2001. Predicting cyano- bacterial dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1905–1908. Relative risk of cyanobacteria dominance for New England lakes and ponds based measured total nitrogen (Total N) concentrations and lake susceptibility to dominance (C-PC:Chl a)

See: Downing, JA, Watson, SB, McCauley, E., 2001. Predicting cyano- bacterial dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1905–1908.

Recreational Suitability of New England Lakes based on Potential Human Health Hazards

Relative Probability* of Acute Health effects	NE Coastal Zone Ecoregion (no. of lakes and ponds)	NE Highlands Ecoregion	Health Effects*
Low (Chl a < 10 μg/L)	19	16	Skin irritations, Gastrointestinal illness
Moderate (Chl a 10-50 μg/L)	8	5	Long term illness, Skin irritations, Gastrointestinal illness
High (Chl a 50 -5000 μg/L)	1	0	Potential for acute poisoning, Long term illness, Skin irritations, Gastrointestinal illness

* from World Health Organization

Questions?

Applied Remote Sensing

Trophic status, ecological condition, and cyanobacteria risk of New England lakes and ponds based on aircraft remote sensing

Darryl J. Keith Bryan Milstead Henry Walker Hilary Snook James Szykman Michael Wusk Les Kagey Charles Howell Cecil Mellanson Christopher Drueke

keith.darryl@epa.gov