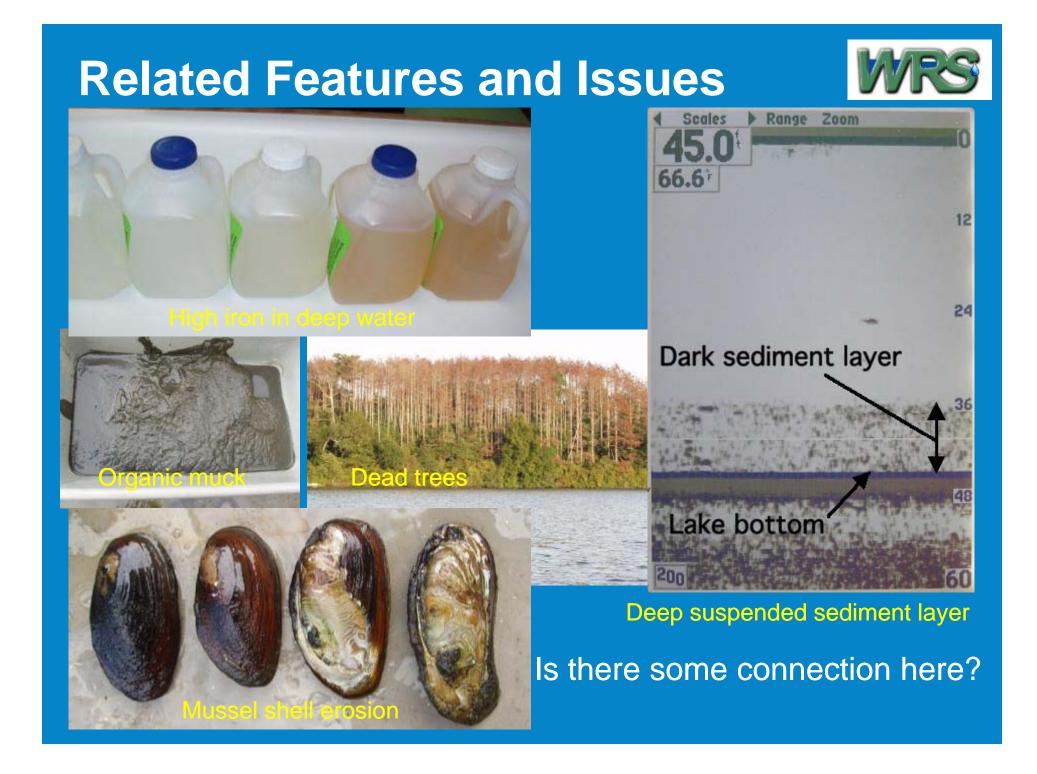
The Aptly Named Mystic Lake: Strange Happenings but Active Management

Background


- Indian Ponds: 3 kettlehole ponds in Barnstable on Cape Cod
- Mystic and Middle considered pristine 15 years ago
- Hamblin impacted by duck farm from 1st half of 20th century, severe cyano-blooms. Treated with aluminum in 1995, clarity high for last 15 years.
- Mystic and Middle have declined, with severe cyano-blooms over last few years. Trigger(s) for recent decline not obvious
- Regulatory inertia

Background

- Blooms of
 Aphanizomenon,
 Anabaena and
 Planktothrix in
 2009 and 2010
- Benthic mats of Cyanos as well
- Major mussel die off in 2009, more in 2010
- "Lethargy" of surviving mussels
- Nerve toxin suspected

Data Review

- Lake layer interactions – major difference in thermocline depth and oxygen status between 2008 and 2009
- Deep algal layer in 2008, rose into upper waters in 2009
- Increasing alkalinity since at least 2004

	Dissolved Oxygen			Chlorophyll a	
Depth (m)	8/19/2008	8/24/2009	Depth (m)	8/19/2008	8/24/2009
0.5	8.1	9.3	0	2.4	31.8
1	8.3	9.3	1		
2	8.3	9.2	2		
3	8.3	9.0	3	1.7	40.6
4	8.3	8.4	4		
5	8.2	0.2	5		
6	8.3	0.1	6		7.9
7	8.8	0.1	7		
8	8.7	0.1	8		
9	0.2	0.1	9	146.3	10.7
10	0.1	0.1	10		
11	0.1	0.1	11		3.7
12	0.1	0.1	12		
13	0.1	0.1	13	2.4	

	Alkalinity (mg/L)						
	2004	2007	2008	2009	2010		
Mean 0-8 m	6	12	14	20	19		
Mean >10 m	17	13	33	44	44		

Background

- No major land use changes in 3 decades, reduced influence from agriculture

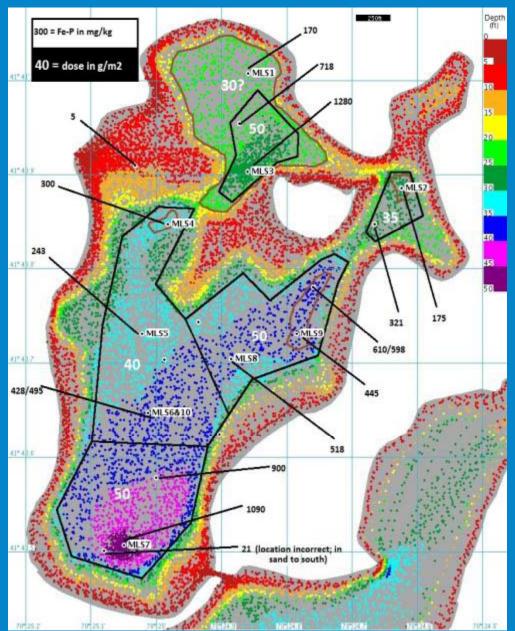
Crooked Cartway

Properties

downgradient of ponds and

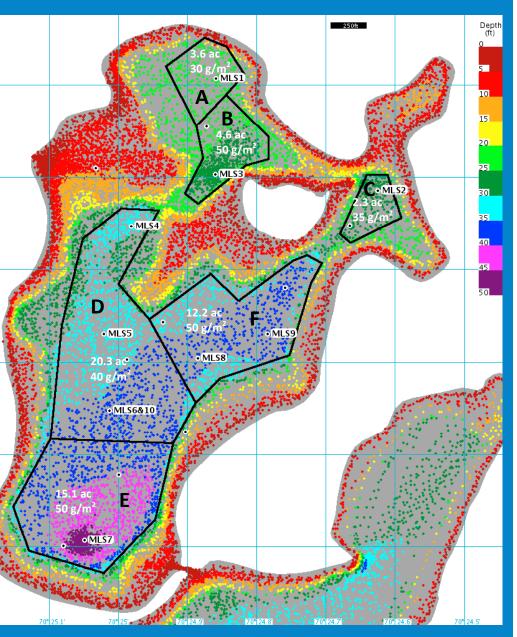
within 300 ft

Recharge Area


- N inputs from development may be significant, but nature of blooms suggests P overload
- Internal loading of P implicated in algal blooms

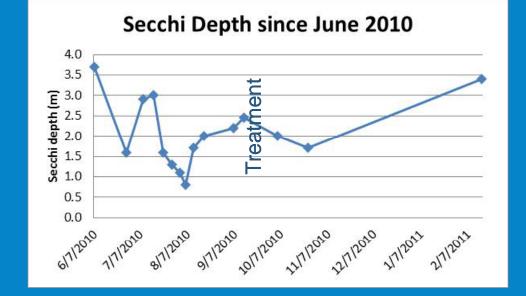

Treatment Prep

- Available sediment P tested, values in target areas range from 170 to 1280 mg/kg
- Aluminum doses of 30 to 50 g/m2 set for 6 target zones covering about 60 acres
- Includes area at north end that is between 20 and 25 ft deep, suitable mussel habitat, to assess impacts of treatment on mussels



Treatment

- 21,002 gal alum, 10,553 gal aluminate applied
- No apparent mortality to fish or mussels after extensive monitoring



Post-Treatment Prognosis

- No immediate improvement in clarity
- Fall algae mainly chlorophytes, not cyanobacteria; diatoms and greens in winter
- Phosphorus data indicate major reduction near bottom, slower shift in average P over whole lake
- Treatment did not harm biota, but success of fall P inactivation is not determinable until the next summer

Lessons Learned

All actions, including doing nothing, have consequences. Not acting can be worse than acting with incomplete information. Not permitting an action may not prevent harm.

 Aquatic systems are not static. A system in fine condition this year may not stay that way, even without any obvious stressors.

 Adequate data, analyzed and interpreted quickly, is a great asset in management programs