Cyanotoxin Removal in Drinking Water Treatment Process and Recreational Waters

Judy Westrick April 14, 2011 2011 Northeast Regional Cyanobacteria Workshop NEIWPCC

Overview Water Treatment

- Source and Recreational Waters
- Treatment to remove intracellular algal toxins
 - Conventional treatment
 - Filtration
 - Membrane technologies
- Treatment to remove extracellular algal toxins
 - Oxidation
 - Physical removal
 - Biologically active filters
- New technologies

Source and Recreational Waters

INTRACELLULAR TOXIN (particulate toxin) Flushing Harvesting Diversion **Flocculants** Algaecides Copper based Sodium carbonate peroxyhydrate

EXTRACELLULAR TOXIN (dissolved toxin) Awareness and get ready to treat

Intake

- INTRACELLULAR TOXIN Adjustable Intake Night vs Day
- EXTRACELLULAR TOXIN Oxidants
 Inline Powdered Activated Carbon (PAC)

Balancing Act A conventional treatment plant will want to keep the cells intact.

Coagulation/Sedimentation

- INTRACELLULAR
 TOXIN
- Oxidants.
- Flocculant aides
- Settled water with less than 100 units/mL

- Monitoring Techniques to determine treatment
 - Turbidimeter
 - Streaming current detector
 - Particle Counter
 - Chlorophyll a
 - Cell counts

Filtration

- Conventional
- Biologically Active
- GAC regenerate or biologically active
- Low Pressure Membrane
 - Micro and ultra filtration

Oxidation Treatment Processes Extracellular toxins

- Chlorine
- Ozone
- Chlorine dioxide
- Chloramines
- UV
- UV and catalyst

Chlorine CT values for reducing microcystin concentration to 1 ugL⁻¹ (Acero et al 2005)

рН	[MCLR] ₀	CT-values, mgL ⁻¹ min			
	ugl ⁻¹	10°C	15°C	20°C	25°C
6	50	46.6	40.2	34.8	30.3
	10	27.4	23.6	20.5	17.8
7	50	67.7	58.4	50.6	44.0
	10	39.8	34.4	29.8	25.9
8	50	187.2	161.3	139.8	121.8
	10	110.3	94.9	82.3	71.7
9	50	617.2	526.0	458.6	399.1
	10	363.3	306.6	269.8	234.9

Compared to CT Values for Disinfectants to inactivate 99.9 (3-logs) of *Giardia Lamblia* cysts.

Chlorination

- Effective against nodularin similar to microcystin.
- Not effective at inactivating anatoxin-a.

– Carlile 1994

• Cylindrospermopsin –a free chlorine residual of 0.5 mg/L at pH above 6.

- Senogles et al 2000

 Saxitoxins— a free chlorine residual of 0.5 mg/L and more effective at high pHs.

Ozonation

- Microcystins and anatoxin-a
 - Residual must be maintained for several minutes
 - Moderate temperatures (16-22°C)
- Saxitoxins --- Not very effective
- Cylindrospermopsin yes

Other oxidants and disinfectants

- Chloramines Not effective
- Chlorine dioxide Not effective (Kull et al. 2004)
- Hydrogen peroxide Not effective
- KMnO₄ Appears to be effective against microcystin

Byproduct formation

- Chlorination
 - Microcystins not a problem
 - Saxitoxin no acute toxicity
 - Cylindrospermopsin liver damage and genotoxicity (Shaw et al 2001 and Senogles-Derham et al 2003)
- Ozonation
 - Microcystin not a problem

UV Treatment

- UV inactivation dose is about 40 mJ/cm² – inactivation of *Crytosporidium* parvum.
- Photolytic destruction dose for microcystin, cylindrospermospin, anatoxin-a and saxitoxin is 1530 to 20,000 mJ/cm².

Advanced oxidation process

- Hydrogen peroxide and ozone (ratio of 0.5)
 - 1 mg/L MCYLR was completely removed in 30 minutes
- Hydrogen peroxide and UV light
- Titanium dioxide and UV light
 - MCYLR varying degrees of success
 - Cylindrospermopsin 2,000 mJ/cm² 1 log decrease,
 - significantly better at high (9) pHs (Senogles et al 2001)
 - DOC and cyanobacterial pigments reduces the efficiency

High Pressure Membrane Filtration

Nanofiltration and Reverse Osmosis Filtration

A summary of intact algal cell removal performance

Treatment	Intact Cell Removal
Coagulation/sedimentation or dissolve air flotation	> 99.5% auxiliary
/rapid sand filtration	
Lime precipitation/sedimentation/ rapid sand	> 99.5 % ancillary
filtration	
Microfiltration/Ultrafiltration	>75% (becoming auxiliary)

Summary of cyanotoxin physical removal by treatment

	Microcystin	Anatoxin-a	Cylindrospermopsin	Saxitoxin
Microfiltration /Ultrafiltration	No	No	No	No
PAC	Yes	Yes	Yes	Yes
GAC	Yes	Yes	Yes	Yes
Ultrafiltration	*	*	*	*
Nanofiltration/ RO	Yes	Has not been investigated.	Yes	Has not been investigated.

Summary of cyanotoxin inactivation by oxidants

	Microcystin	Anatoxin-a	Cylindrospermopsin	Saxitoxin
Chlorine	Yes	No	Yes	Yes
Ozone	Yes	Yes	Yes	No
Chloramine	No	No	No	Has not been investigated.
Chlorine dioxide	No	No	No	Has not been investigated.
Hydroxyl radical	Yes	Yes	Yes	Has not been investigated.
Potassium permanganate	Yes	Yes	No	No

Questions?